
Writing and compiling
larger programs

Lecture 04.02

Given perfectly valid program

float total = 0.0;
short tax_percent = 6;

float get_with_tax(float f) {
float tax_rate = 1 + tax_percent / 100.0;
total = total + (f * tax_rate);
return total;

}

int main() {
float val = 12.30;
printf("With tax: %.2f\n",

get_with_tax(val));
}
return 0;

}

Change the order:
it does not compile

?

float total = 0.0;
short tax_percent = 6;

float get_with_tax(float f) {
float tax_rate = 1 + tax_percent / 100.0;
total = total + (f * tax_rate);
return total;

}

int main() {
float val = 12.30;
printf("With tax: %.2f\n",

get_with_tax(val));
}
return 0;

}

gcc totaller.c -o totaller && ./totaller
totaller.c: In function "main":
totaller.c:14: warning: format "%.2f" expects type
"double", but argument 2 has type "int“
totaller.c:23: error: conflicting types for “get_with_tax"
totaller.c:14: error: previous implicit declaration of
“get_with_tax" was here

The logic of GCC: 1

Here’s a call to a function I’ve
never heard of.
I’ll keep a note of it for now and
find out more later.
I bet the function returns an int.
Most do.

get_with_tax()
returns intfloat total = 0.0;

short tax_percent = 6;

float get_with_tax(float f) {
float tax_rate = 1 + tax_percent / 100.0;
total = total + (f * tax_rate);
return total;

}

int main() {
float val = 12.30;
printf("With tax: %.2f\n",

get_with_tax(val));
}
return 0;

}

The logic of GCC: 2

float total = 0.0;
short tax_percent = 6;

float get_with_tax(float f) {
float tax_rate = 1 + tax_percent / 100.0;
total = total + (f * tax_rate);
return total;

}

int main() {
float val = 12.30;
printf("With tax: %.2f\n",

get_with_tax(val));
}
return 0;

}

get_with_tax()
returns int

A function called
get_with_tax() that
returns a float???
But in my notes it says
we’ve already got one of
these returning an int…

totaller.c:23: error: conflicting types for “get_with_tax"
totaller.c:14: error: previous implicit declaration of
“get_with_tax" was here

The order of functions
matters to GCC
int do_whatever(){...}

float do_something_fantastic (int awesome_level) {...}

int do_stuff() {

do_something_fantastic(11);

}

Keeping the order is painful

int do_whatever() {

do_something_fantastic(5);

}

float do_something_fantastic (int awesome_level) {...}

int do_stuff() {

do_something_fantastic(11);

}

And sometimes impossible

float ping() {

...

pong();

...

}

float pong() {

...

ping();

...

}

If you have two functions that call each other, then one of them
will always be called in the file before it’s defined

Solution: split the declaration and
the definition
• Explicitly tell to the compiler what functions to expect

• When you tell the compiler about a function, it’s called a
function declaration:

float add_with_tax();

Function declaration does not have the body!

;

No assumptions – the code compiles

float total = 0.0;
short tax_percent = 6;

float get_with_tax(float f) {
float tax_rate = 1 + tax_percent / 100.0;
total = total + (f * tax_rate);
return total;

}

int main() {
float val = 12.30;
printf("With tax: %.2f\n",

get_with_tax(val));
}
return 0;

}

float get_with_tax(float f);
Declaration comes before use,
and can be defined anywhere in
the file

Put declarations into a header file

• The declaration is just a function signature: name,
parameters, and the type of return

• Once you’ve declared a function, the order of function
definitions is not important

• But even better: take the whole set of declarations out and
put them in a header file

Header files. Include

• Create a new file totaller.h:

float get_with_tax(float f);

• Include your header file in your main program

#include <stdio.h>

#include "totaller.h"

...

• When the preprocessor sees the #include in the code, it
copies its text into the source file

Breaking code into multiple files:
motivation
• Small programs -> single file

• “Not so small” programs :

• Many lines of code

• Multiple reusable components

• More than one programmer

Example: Game code in a single file
game.c game.c (cont.)

#include <stdio.h>
int score = 0; // global variable
void update_score(int amt) {
...
}
void render_score() {
...
}
void render_board() {
...
}
void create_board(char *config) {
...
}
char *get_winner() {
...
}
void check_if_done() {
...
}

int add_user(char *name) {
...
}
int remove_user(char *name) {
...
}
char *move_user(char *name) {
...
}
void end_game() {
...
}
void start_game() {
...
}
void reset_game() {
...
}
int change_level(int level_id) {
...
}

Regroup functions according to
their logic
• The game functions could be regrouped into separate files,

with each file containing a subset of functions dealing with a
particular aspect of the game.

• There are many ways to divide these functions. One possible
division may be the following:

• Rendering functions (i.e. visual appearance)

• Functions related to score-keeping

• Functions which affect the game’s state

• Functions for maintaining user status

Functions distributed into
multiple files

render.c score.c state.c users.c

render_score()

render_board()

update_score()

check_if_done()

get_winner()

start_game()

end_game()

reset_game()

change_level()

add_user()

remove_user()

move_user()

• To allow our program to make use of functions across various
files, we need to add a header file with function declarations

• When parsing the code for compilation, GCC will verify the
correct use of types and will link noted functions once it
encounters their implementations

Header file: game.h
void update_score(int);

void render_score();

void render_board();

void create_board(char *);

char *get_winner();

void check_if_done();

int add_user(char *);

int remove_user(char *);

char *move_user(char *);

void end_game();

void start_game();

void reset_game();

int change_level(int);

• The file extension for
header files is “.h”, not
“.c”.

• You must specify the
return type and
parameter types for each
function.

• You do not have to
include the parameter
names, but you’re free
to do so.

Include game.h into each c file

• Problems:

• If a function in a header file is defined more than once across the
various C files

• If a function in a header file is called, but not defined in any of the
C files

• If the header file is included more than once

render.c score.c state.c users.c

#include "game.h"

render_score()

render_board()

update_score()

#include "game.h"

check_if_done()

get_winner()

#include "game.h"

start_game()

end_game()

reset_game()

change_level()

#include "game.h"

add_user()

remove_user()

move_user()

Include game.h into each c file

• Problems:

• If a function in a header file is defined more than once across the
various C files

• If a function in a header file is called, but not defined in any of the
C files

• If the header file is included more than once

render.c score.c state.c users.c

#include "game.h"

render_score()

render_board()

update_score()

#include "game.h"

check_if_done()

get_winner()

#include "game.h"

start_game()

end_game()

reset_game()

change_level()

#include "game.h"

add_user()

remove_user()

move_user()

Include guards

• It is possible that different parts of the application
ask for the same header file to be included

• To prevent compiler complaints about double
declarations, you need to put include guards
around the content of each header file, like this:

#ifndef HEADERFILE_H
#define HEADERFILE_H

Your declarations here
and at the end of the file is:

#endif

Include guards

• Once the include “headerfile.h” is encountered, GCC
checks if a unique value (in this case HEADERFILE_H) is
defined

• Then if it's not defined, it defines it and continues to
including the rest of the file

• When the the include “headerfile.h” is encountered
again, the first ifndef fails, resulting in a blank file

• That prevents double declarations.

#ifndef HEADERFILE_H
#define HEADERFILE_H

Your declarations here
and at the end of the file is:

#endif

To fully understand how it works, we need to look
at…

Four steps of compilation

Preprocessing: fix the source
Adds any extra header files it’s been told
about using the #include directive.
Expands or skips over some sections of
the program.

Compilation:
translate into assembly
Converts the C source code into assembly
language: converts an if statement or a
function call into a sequence of assembly
language instructions.

Assembly:
generate the object code
Assembles the symbol codes into machine
or object code. This is the actual binary
code that will be executed by the circuits
inside the CPU. If you give the computer
several files to compile for a program, it
will generate a piece of object code for
each source file.

Linking: put it all together
Fits pieces of object code together to
form the executable program. The
compiler will connect the code in one
piece of object code that calls a function
in another piece of object code

movq -24(%rbp), %rax
movzbl (%rax), %eax
movl %eax, %edx

1

2

3

4

Sharing code - through linking

• Having game.h included in main.c will mean the compiler
will know enough about, say, start_game() function to
compile main.c into main.o (step 3)

• At the linking stage (step 4), the compiler will be able to
connect the call to start_game() in state.c to the actual
start_game() function implemented there

• To do all the four steps and compile everything together you
just need to pass all the source files to GCC:

gcc score.c state.c render.c main.c -o game

Sharing variables

• Source code files normally contain their own separate
variables

• If you want to share variables, you should declare them in
your header file and prefix them with the keyword extern:

extern int passcode;

Summary: sharing code

• You can modularize code by dividing it between multiple C
files

• Put the function declarations in a separate .h header file

• Include the header file in every C file that needs to use the
shared code

• List all of the C files needed in the compiler command

Skipping some compilation steps

• If you’ve just made a change to one or two of your source
code files, it’s a waste to recompile every source file for your
program.

• The compiler will run the preprocessor, compiler, and
assembler for each source code file. Even the ones that
haven’t changed.

• And if the source code hasn’t changed, the object code
that’s already generated for that file won’t change either –
and steps 1,2,3 for such files can be avoided

Compile the source into object
files
• If you tell the compiler to save the object code into a file, it

shouldn’t need to recreate it unless the source code
changes.

• If a file does change, you can recreate the object code for
that one file and then pass the whole set of object files to
the compiler so they can be linked.

gcc -c *.c
This will create object code for every c file.
Option -c tells the compiler that you want to create an object
file for each source file, but you don’t want to link them
together into a full executable program

Create executable by linking
object files
• Now that you have a set of object files, you can link them

together with a simple compile command

• But instead of giving the compiler the names of the C source
files, you tell it the names of the object files:

gcc *.o -o game

Recompile only file that changed

• Now you have a compiled program, just like before.

• But you also have a set of object files that are ready to be
linked together if you need them again

• If you change just one of the files, you’ll only need to
recompile that single file and then relink the program:

gcc -c score.c

gcc *.o -o game

Simple rule for recompiling
specific files
• How do you know if the score.o file needs to be recompiled

from score.c?

• You just look at the timestamps of the two files.

• If the score.o file is older than the score.c file, then the
score.o file needs to be recreated

• Otherwise, it’s up to date

• If we have a simple rule, we can automate this
process

Automate compilation with make

• The make tool will check the timestamps of the source files
and the generated files, and then it will only recompile the
files if things are out of date

• Every file that make compiles is called a target

• For every target, make needs two things:

• the dependencies - which files the target is going to be
generated from

• the recipe– the set of instructions it needs to run to
generate the file

To write makefile we need to
understand project structure
• Project structure and dependencies can be represented as a

DAG (= Directed Acyclic Graph)

• Example :

• Program contains 5 files:

main.c., state.c, score.c, render.c, and game.h

• game.h is included in all .c files

• The final executable should be called game

Sample project structure

game (exe)

main.o

main.c

game.h

state.o

state.c

game.h

score.o

score.c

game.h

render.o

render.c

game.h

Sample make file
main.o: main.c game.h

gcc -c main.c

score.o: score.c game.h

gcc -c score.c

render.o: render.c game.h

gcc -c render.c

state.o: state.c game.h

gcc -c state.c

game: main.o score.o render.o state.o

gcc –o game main.o score.o render.o state.o

Sample make file

main.o: main.c game.h

gcc -c main.c

score.o: score.c game.h

gcc -c score.c

…

game: main.o score.o render.o state.o

gcc –o game main.o score.o render.o state.o

dependencies

rule

The recipe must begin
with a tab character

Shorter make file

• .o depends (by default) on corresponding .c file.
Therefore, equivalent makefile is:

main.o: game.h
gcc -c main.c

score.o: game.h
gcc -c score.c

…

game: main.o score.o render.o state.o

gcc –o game main.o score.o render.o state.o

How make operates

• Project dependencies tree is constructed

• Target of first rule should be created

• We go down the tree to see if there is a target that
should be recreated. This is required when the
target file is older than one of its dependencies

• In this case we recreate the target file according to
the action specified, on our way up the tree.
Consequently, more files may need to be recreated

• If something was changed, linking is performed

Minimum compilation

• make operation ensures minimum compilation,
when the project structure is written properly

• Do not write something like:

game: main.c score.c state.c

gcc -o game main.c score.c state.c

• This rule requires compilation of all project when
something has changed

Minimum compilation: example

File Last Modified

game 10:03

state.o 09:56

render.o 09:35

state.c 10:45

render.c 09:14

game.h 08:39

What should be
recompiled?

Minimum compilation: example

File Last Modified

game 10:03

state.o 09:56

render.o 09:35

state.c 10:45

render.c 09:14

game.h 08:39

state.o should be
recompiled (state.c is
newer)

Consequently,
state.o is newer than
game and therefore
executable game
should be recreated
(by re-linking).

Using make

• Save your make rules into a text file called Makefile in the
same directory

• Then, open up a console and type:

make game

Multiple targets

• We can define multiple targets for multiple
executables in the same makefile

• Target clean – has an empty set of dependencies.
Used to clean intermediate files.

make

• Will create all the executables

make clean

• Will remove intermediate files

Simple make tutorial

http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

